
1.6  The zoo of basic analytic functions, their derivatives, and branches for their 
inverses.  (We'll continue section 1.6 on Monday.)

Def  If f :  is analytic on all of , then f  is called entire.

Examples:  
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Here is a non-entire function, but you can define it as a differentiable function locally, 
or using any branch domain for log z:

f z = za ea log z  ,  a                       f z =

Question:  For f z = za  as above, does the multi-value definition agree with 
f z = zn, n ?   

Question:  For f z = za  as above, does the multi-value definition agree with the 

multivalue definition of the nth  root function f z = z
1
n , n ?
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Math 4200
Wednesday September 16   

1.6 differentiation and mapping of elementary functions and branches of their inverses, 
and compositions of all of these.

Announcements:  We'll begin by covering the part of Monday's notes which introduces 
section 1.6, before proceding into today's notes which discuss how to find branched 
domains (aka fundamental domains) on which multi-valued functions can be defined as 
single-valued analytic functions.

quiz today 41.5



Branches of analytic functions overview:  If f  is entire, i.e. analytic on all of , then it 
turns out (Picard's Theorem) that if f  is not a constant function, then the range of f  
omits no more than two points in !  Furthermore, it turns out that the zeroes of f z  
are isolated (i.e. if f z0 = 0 then there exists r 0 such that 
f z 0 w D z0, r z0 .)  So f  has a local inverse function except at 
possibly a countable set of z .

In most cases this means one can construct a differentiable partial "inverse" function g 
on a very large subdomain of .  It will satisfy half of the inverse function condition, 
namely

f g z = z.

And the domain of g can usually be chosen to be a connected open domain A  with 
a just finite number of curves removed from  to get A . These omitted curves are 
called branch cuts, and the choice of (partial) inverse function is called a branch of the 
inverse function.  Branch cuts always terminate either at  (which means  z ), or
at finite points, and these are called branch points.  

In our text section 1.6 these branch domains are called fundamental domains.  There is 
usually some freedom in how they are chosen.
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The most central example of this discussion is f z = ez which omits only the point 0 in
its range, and branch choices for the multivalued inverse log z .  A nice graphic picture
from the wikipedia page on the complex logarithm which visualizes the possible branch 
choices for log z ,  is obtained by plotting the parametric surface 

r cos , r sin ,  in 3 .  I haven't figured out precisely what the curves on the 
helicoid are, although they seem to be related to some conformal parameterization of the
helicoid, not the r  one.  Since the helicoid is a minimal surface, i.e. locally area 
minimizing and a possible shape for soap films, it turns out that it can be parameterized 
in a conformal way using harmonic functions.  (!)

Example 1)   f z = ez, g w = log w = ln w i arg w where we choose 
arg w .  This is called the standard branch of log w.  We've seen this 

before, but sketch the branch domain and the mapping picture for g w .   Name some 
other possible branches.
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Example 2)  f z = z2, g w = w  (for some branch choice).   Note for any branch 
choice of g,

f g w = w
f g w g w = 1

g w = 1
f g w = 1

2 g w = 1
2 w

1
2 .

Describe the range of the branch of the square root function defined below.  Write down
two other branch choices - one using the same branch cut, and another one using a 
different cut.

On Friday
we'll do this indepth
or



Example 3)  Find a definition and branched domain for
f z = z2 1 .

(In your homework for next week you will do an analogous procedure for 
g z = z3 1 .)  Begin by identifying branch points based on where f  or f cannot be
not defined as an analytic function.

Then
a)  Writing  f z = z2 1 = z 1 z 1  leads to one possible way of proceding.

b)  Considering f  as a composition, f z = g h z  with h z = z2 1 and 
g w = w  recovers the first branched domain, but also leads to a choice with only a 
finite branch cut, as well as the original one.
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